LEGO MINDSTORMS: Pass the Build – Tricky (Robot Inventor 51515)

The Robotmak3rs have had a lot of fun recently playing with the new LEGO Robot Inventor kit (51515), released last week. Watch as Tricky is passed around the world to be built by a few of us.
Several RobotMak3rs from around the world take it in turns to pass the build of Tricky from the LEGO® MINDSTORMS 51515 Robot Inventor kit, released on 15th October 2020. Thanks goes out to LEGO and the RobotMak3rs RLOC for supporting this project. RobotMak3rs Community Facebook page: https://www.facebook.com/robotmak3rs/
Music: „Small Guitar“ from Bensound.com
And Robots-Blog is also part of this video 😉

Igus Robolink Programming Session #1

My workplace for today was kind of different. Thanks @igusgmbh (https://www.igus.de/robolink/roboter) for making this possible. I am learning a lot about robot programming today. I wish I could have such a powerful robot next to my desk any given day.

Robo Wunderkind Explorer Lite Freestyle Build Session

Robo Wunderkind Explorer Lite Freestyle Build Session Timelapse Video. I built my first own creation and used the Robo Blockly app to program it.

Cardbots – Cardboard robotics for future makers

The first maker robotics platform that uses cardboard robots to help kids to develop skills for the future at home. Now live on Kickstarter.

For immediate release – October 6th, 2020 – Cardbots is pleased to announce its launch on Kickstarter to help kids aged 8+ to develop skills for the future at home. With Cardbots, kids can  make fun robots out of cardboard, a material that is abundant, recyclable and easy to work with.

Cardbots has developed a system of biodegradable plastic pieces in order to assemble cardboard without glue or tape,  a robot controller with programming software and online curricula. Cardbots has created a learning experience that allows kids to empower themselves to solve problems with technology and to become Future Makers.

Cardbots was created by a team of educators, makers, engineers and designers with many years of experience in EdTech and emergent technologies. During the pandemic and the disruption of the education system, they realised  that families need new educational experiences that can take place at home with a  true focus on STEAM and skills that kids will need in the future.

The kit is available on Kickstarter and ships anywhere in the world with an exclusive discount on its retail price, including unlimited access to the online learning platform.

https://www.kickstarter.com/projects/cardbots/cardbots

 

LEGO MINDSTORMS Robot Inventor #51515 Timelapse Video „Blast“

As one of the RobotMak3rs (http://www.robotmak3rs.com/Sebastian-Trella/) and with support by LEGO, I had the opportunity to get my hands on the new LEGO MINDSTORMS Robot Inventor Set #51515 early. Thank you to the RobotMak3rs RLOC and LEGO for making this possible! This is the second video featuring the new MINDSTORMS Set; you will see me doing a timelapse of the build of „Blast“. Blast is one of the 5 robots that come with the 5in1 Set #51515. The other robots will for sure also be shown on this website in the short future.

First LEGO MINDSTORMS Robot Inventor #51515 Timelapse Video „Tricky“

As one of the RobotMak3rs (http://www.robotmak3rs.com/Sebastian-Trella/) and with support by LEGO, I had the opportunity to get my hands on the new LEGO MINDSTORMS Robot Inventor Set #51515 early. Thank you to the RobotMak3rs RLOC and LEGO for making this possible!

In this first video featuring the new MINDSTORMS Set, you will see me doing a timelapse of the build of „Tricky“. Tricky is one of the 5 robots that come with the 5in1 Set #51515. The other robots will for sure also be shown on this website in the short future. But for now, enjoy the build of „Tricky“. The build of the first two stages took me about 20 minutes. So, after 20 minutes you have a driving base which can be extended with some „tools“ to make Tricky the amazing robot he is. More information about this amazing new LEGO MINDSTORMS set can be found here: https://robots-blog.com/2020/06/12/new-lego-mindstorms-robot-inventor-lets-creators-build-and-bring-to-life-anything-they-can-imagine/
There you will also find pictures and videos of the other robots, like Gelo, Blast, M.V.P. and Charlie.

AGVs keep the PPE moving during the COVID-19 pandemic

St-Sulpice Switzerland, October 07, 2020 – The COVID-19 crisis has focussed public attention on the role that hospitals and healthcare professionals play in treating those infected by the virus. Working within strict social distancing guidelines and limited staff has strained the resources of some of the support staff including internal logistics suppliers.

This is why an increasing number of hospitals around the world are reaping the benefits of investment in automated guided vehicles (AGVs). 

A modern hospital or clinic handles a huge amount of internal transportation daily. A 200-bed hospital transports an average of six tons of materials per day over a total distance of about 60 km, while an 800-bed hospital can handle up to 27 tons of materials, covering a distance of about 800 km. By utilising an AGV logistics system these movements can be handled more efficiently, freeing up valuable resources for medical activities.

One hospital in Garbagnate Milanese, Italy, for example, employs AGVs to automate these processes. The 57,000 m2 facility has over 500 beds and the backend logistics are handled by 12 AGVs that transport goods to 147 reception stations throughout the hospital.

The quality of transport in healthcare is essential, in order to safeguard the integrity of the materials carried, ensuring a high level of hygiene and assuring the health of patients.  One company that has been supporting healthcare facilities automate their logistics since 2012 is Italy-based Oppent, with its EvoCart series of mobile robots, specifically developed for hospitals and medical centres. These vehicles can handle food, laundry, waste, sterilisation, pharmacy, and general supplies, including ensuring that vital personal protection equipment (PPE) is in the right places at the right time during the current pandemic. Oppent has managed handling in more than 20 healthcare facilities. 

Oppent’s bi-directional mobile robots have a programmable speed of 0.10 m/s to 2.0 m/s and respect the safety regulations ISO 3691-4. Their movements are controlled by Autonomous Navigation Technology (ANT®), by BlueBotics, which uses natural structures in the environment—such as walls or furniture—as references, to ensure each vehicle knows where exactly it is. This approach means an AGV installation does not require expensive infrastructure changes, such as inductive wires being laid in the floor, or triangulation reflectors on the walls, in order to navigate effectively. 

The AGVs are quickly installed with ANT® lab tool suite and modifications to routes are even simpler. As a result, installations are simple and economical to set up and maintain, whether a single automated guided vehicle or a large fleet. A specific built-in safety system using specific certified laser scanners can identify any obstacles along the path and adjust the movement of the vehicle, with the AGVs autonomously handling obstacles either by adapting their speed to avoid emergency situations (path following) or moving around them (obstacle avoidance).

======================

About BlueBotics

BlueBotics aims to become the reference in autonomous navigation with the mission to enable the mobility of vehicles for the automation in the professional use market.

The company is now active in two segments:

  • Industrial automation – BlueBotics proposes ANT®, its innovative navigation solution.
  • Service robotics – The company proposes engineering services based on its expertise in mobile robotics with standard platforms, feasibility studies, custom designs, and dedicated developments to enable new customer applications.

SqwaQ Wins AUVSI Xcellence Award for BVLOS Drone Communications Solution

DALLAS (PRWEB) OCTOBER 04, 2020

SqwaQ, a pioneering leader in air-to-ground (A2G) LTE connectivity that enables safe BVLOS drone flights, has been recognized by the AUVSI with a 2020 Xcellence Award for Technology & Innovation. Winners were selected from a pool of accomplished applicants across various categories.

“The AUVSI XCELLENCE Awards honor innovators with a demonstrated commitment to advancing autonomy, leading and promoting safe adoption of unmanned systems and developing programs that use these technologies to save lives and improve the human condition,” said Brian Wynne, president and CEO of AUVSI.

The SqwaQbox is the first carrier approved 4G/LTE modem for Airborne LTE Operations (ALO) that delivers robust, multi-redundant connectivity for safe BVLOS flights. The 270 gram device enables multiple cameras and sensors to stream video in real time with nationwide Command and Control (C2) of the aircraft. This provides the remote pilot with an in-the-cockpit experience that includes pilot view cameras, the capability to fly in controlled airspace, remote operation of ADSB or Mode-S transponders, voice communication to the remote air traffic control tower using aviation VHF radio, and more. The remote pilot can safely integrate with manned aircraft traffic and even take off or land at the world’s busiest airports. These capabilities, and more like it, are already patented by SqwaQ and part of a longer range roadmap that integrates unmanned traffic, rather than UTM segregation which is restrictive and not practical.

A major obstacle facing the UAS industry has been the ability to maintain command and control over long distances via a multi-redundant communication link that not only streams video and sensor data, but can pass muster with FAA safety requirements. SqwaQ understood this from the outset and manufactures the AS9100 Certified SqwaQbox to those aviation standards, with an eye toward additional FAA certifications that may become mandatory for all UASs the future.

Over the last ten years, the drone industry has been guided by robotics engineers and drone enthusiasts with little knowledge of FAA rules or FAR safety guidelines. This has led to challenging FAA authority over the airspace and ignoring aviation safety guidelines in hopes of allowing tens of thousands of flimsy drones to invade the safest airspace in the world. To the FAA this is a dangerous threat. SqwaQ technology is the missing component that resolves this conflict and integrates all connected aircraft in the sky, allowing safe integration of any properly built Remotely Piloted Aircraft.

Today in 2020, major aviation manufacturers are quietly designing their own Remotely Piloted Aircraft solutions with an eye toward full FAA type class certification and safety compliance. That’s not a Part 107 waiver or Part 135 exemption that restricts operations. It means passing a rigid safety certification like Boeing, Bell and Airbus routinely undertake with manned aircraft, to fly unfettered in the airspace and deliver value to customers that toy drones cannot achieve.

SqwaQ is engaged with many aviation manufacturing partners to lead the transformation to certified Remotely Piloted Aircraft. That RPA moniker will denote a real aircraft, flown freely across controlled airspace by a real pilot holding a conventional pilot certification and pedigree. SqwaQ anticipates that OEMs using its BVLOS technology may eliminate 75% of their competitors in the drone industry, as certified aircraft push out the flimsy toys being fobbed off, particularly in public safety.